Prediction intervals based on historical controls for the micronucleus test

Jonathan Rathjens¹⁾, Max Menssen²⁾ and Hannes-Friedrich Ulbrich³⁾

¹⁾ Early Development Statistics, Chrestos GmbH, Essen
²⁾ Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover
³⁾ Scientific Insight Solutions, Bayer AG, Berlin

Workshop of the IBS-DR Working Groups 'Non-Clinical Statistics' and 'Bayes Methods', Göttingen, 5/6 December 2024

Micronucleus

- adverse event during cell division
- small fragment of chromosomes outside new nuclei
- hint to genotoxic conditions

Micronucleus test (MNT) in-vitro

Test assay validation

- ensure validity of results
- OECD Guideline for the Testing of Chemicals 487
- considering negative and positive control groups
- current experiment's wells' counts compared to historical distributions

Historical control group data

- about H = 30 valid historical MNT experiments
- I = 6 wells per experiment
- ... for negative and positive controls
- count data per well: cells with at least one micronucleus

Endpoint information per well

experiment h = 1, ..., H; well i = 1, ..., I; n = 3000 cells as target

- **raw**: x_{hi} cells out of n have at least one micronucleus
- proportional: $p_{hi} = x_{hi}/n \in (0, 1)$
- transformed: $z_{hi} = \log(p_{hi}/(1-p_{hi})) \in \mathbb{R}$

Prediction intervals

95% prediction interval for ONE well for negative controls, with 'new data'

- for micronucleus proportion $p_{(H+1)1}$ of ONE well in a future experiment
- directly interpretable on data level
- several model candidates
- evaluation by cross validation, leaving out one historical experiment per run

Conventional models

 $x_{hi} \sim \operatorname{Bin}(n, \pi)$ or

 $z_{hi} \sim N(\mu, \sigma^2)$

using all data without experiment information

not accounting for

- overdispersion between experiments (random effects of experiments)
- overdispersion within experiment (random effects of wells)

Bootstrap-calibrated prediction intervals

• R package predint

(Menssen and Schaarschmidt 2022, *Stat Neerl* 76(3); Menssen et al. 2024, *Pharm Stat* online-first)

- accounting for between-experiment-overdispersion
 - using aggregated count data $X_h = \sum x_{hi}$ on experiment level
 - not accounting for within-experiment-overdispersion
 - predicting total count per experiment

• beta-binomial:

$$\pi_h \sim \text{Beta}(a, b)$$
$$X_h \sim Bin(n \cdot I, \pi_h)$$

• or equivalently (*n* and *I* constant) **quasibinomial**:

$$E(X_h) = \pi \cdot n \cdot I$$

Var $(X_h) = \phi \cdot \pi \cdot (1 - \pi) \cdot n \cdot I$

Bayesian (generalized) random effect models

	overdispersed binomial	approximative normal
data	$x_{hi} \sim \operatorname{Bin}(n, \pi_{hi})$	$z_{hi} \sim N(\mu_h, \sigma^2)$
transformation	$\pi_{hi} = \text{logit}^{-1}(\mu_{hi})$	
	$\mu_{hi} = \alpha + \beta_h + \gamma_{hi}$	$\mu_h = \alpha + \beta_h$
random effects	$\beta_h \sim N(0, \tau^2)$	$\beta_h \sim N(0, \tau^2)$
	$\gamma_{hi} \sim N(0, \sigma^2)$	
model-parameters	$\alpha \sim (-\infty, +\infty)$	$\alpha \sim (-\infty, +\infty)$
	$\tau^2 \sim (0, +\infty)$	$\tau^2 \sim (0, +\infty)$
	$\sigma^2 \sim (0, +\infty)$	$\sigma^2 \sim (0, +\infty)$

Cross-validated prediction intervals

Example: Bayesian overdispersed binomial

left-out experiment

Comparison of prediction interval bounds

New data inside interval – overall proportions

Results' summary

- small differences between methods
- Bayesian models using individual data
- ... return wider prediction intervals
- ... have proportion of 'new' well data within 95%-prediction-interval closer to 95%

Perspectives

- joint analyses of negative and positive controls
 - model all data jointly or
 - consider derived data representing the ratio of positives and negatives
- temporal correlation structure between experiments
- more stable results using larger historical database
- simultaneous prediction for all wells of one future experiment

Conclusions

- prediction intervals from historical controls suitable for validating new experiment
- consider both negative and positive controls
- model individual values
 - with experiment random effects
 - with overdispersion

