Prior distributions from meta-analytic predictions

Christian Röver

UNIVERSITÄTSMEDIZIN

Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

IBS-DR workshop "Hierarchical models in preclinical research" Göttingen, December 6, 2024

- the Bayesian hierarchical model
- estimating different quantities
- upstream priors and downstream likelihoods: the MAP prior
- investigating (prior) informativeness: ESS etc.
- being sceptical/conservative: anticipating prior-data conflict / robustification
- application areas:
 - predicting parameters
 - predicting data
 - predicting heterogeneity

Normal approximation for "effect measures"

- single study's outcome, often: estimate \pm standard error
- normal approximation ("Wald" CI) often appropriate ("large" sample size within study)
- (standard errors are assumed known, fixed!)
- sometimes transformations are used—
 - improved normal approximation
 - (later: implications for "between-study" modeling)
- examples:
 - means, mean differences, standardized mean differences
 - (log-) proportions, (log-) odds
 - (log-) risk ratios, (log-) odds ratios
 - (log-) rate ratios, (log-) hazard ratios
 - (Fisher-z transformed) correlation coefficients

```
• . . .
```

Normal random effects

- variability (heterogeneity) between studies commonly anticipated
 - to reflect differing study characteristics
 - to implement stratification by study
 - to avoid overoptimism / naïve pooling
- especially for few studies (small k), heterogeneity is hard to detect (tests have low power)¹
- empirically: heterogeneity commonly present ²

 some amount of between-study heterogeneity should be anticipated ³ (
 -> random-effects model)

¹R. J. Hardy, S. G. Thompson. Detecting and describing heterogeneity in meta-analysis. *Statistics in Medicine*, **17**(8): 841–856, 1998.

²E. Kontopantelis, D. A. Springate, D. Reeves. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. *PLoS ONE*, **8**(7):e69930, 2013.

³J. P. T. Higgins. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. *International Journal of Epidemiology*, **37**(5):1158–1160, 2008.

The generic normal-normal hierarchical model (NNHM)

- the meta-analysis data set:
 - effect estimates y_i (i = 1, ..., k)
 - (standard errors s_i)
- model (likelihood):

$$egin{array}{rcl} m{y}_i | m{ heta}_i & \sim & {\sf Normal}(m{ heta}_i, m{s}_i^2) \ m{ heta}_i | \mu, au & \sim & {\sf Normal}(\mu, au^2) \end{array}$$

or (marginally):

$$y_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2 + s_i^2)$$

- parameters:
 - study-specific effects" θ_i
 - "overall mean effect" μ
 - "heterogeneity" $\tau \geq 0$
- for $\tau = 0$, reduces to common-effect model $(\tau = 0 \Rightarrow \theta_1 = \cdots = \theta_k = \mu)$

The generic normal-normal hierarchical model (NNHM)

 the NNHM as a *directed acyclic graph (DAG)*: overall parameters (μ, τ), study-specific effects (θ_i), data (y_i)

Christian Röver

The generic normal-normal hierarchical model (NNHM)

 the NNHM as a directed acyclic graph (DAG): overall parameters (μ, τ), study-specific effects (θ_i), data (y_i), standard errors (s_i)

Christian Röver

Example 11 historical trials (Neuenschwander *et al.*, 2010)

 example: treatment failure in transplantation; data from 11 "historical" control groups (930 patients) to support new trial ⁴

i	events	proportion (%)	odds	log-odds y _i (s _i)
1	6/33	18.2	0.222	-1.50 (0.45)
2	8/45	17.8	0.216	-1.53 (0.39)
3	17/74	23.0	0.298	-1.21 (0.28)
4	28 / 103	27.2	0.373	-0.99 (0.22)
5	26 / 140	18.6	0.228	-1.48 (0.22)
6	8/49	16.3	0.195	-1.63 (0.39)
7	22 / 83	26.5	0.361	-1.02 (0.25)
8	8/ 59	13.6	0.157	-1.85 (0.38)
9	6/22	27.3	0.375	-0.98 (0.48)
10	16 / 109	14.7	0.172	-1.76 (0.27)
11	53 / 213	24.9	0.331	-1.10 (0.16)

⁴B. Neuenschwander, G. Capkun-Niggli, A. Branson, D. J. Spiegelhalter. Summarizing historical information on controls in clinical trials. *Clinical Trials*, **7**(1):5–18, 2010.

Example

11 historical trials (Neuenschwander et al., 2010)

study	log-odds	95% CI	
study01	-1.50	[–2.39, –0.62]	
study02	-1.53	[–2.30, –0.77]	_
study03	-1.21	[–1.75, –0.67]	_
study04	-0.99	[–1.42, –0.55]	_
study05	-1.48	[–1.90, –1.05]	_
study06	-1.63	[–2.39, –0.88]	
study07	-1.02	[–1.51, –0.53]	_
study08	-1.85	[–2.60, –1.11]	
study09	-0.98	[–1.92, –0.04]	_
study10	-1.76	[–2.29, –1.23]	_
study11	-1.10	[–1.42, –0.79]	_
			-2.5 -2 -1.5 -1 -0.5 0
			log–odds (failure)

• analysis on log-odds scale

Example

11 historical trials (Neuenschwander et al., 2010)

study	log-odds	95% CI					
study01	-1.50	[-2.39, -0.62]		-		-	
study02	-1.53	[-2.30, -0.77]					
study03	-1.21	[-1.75, -0.67]					
study04	-0.99	[-1.42, -0.55]			-	_	
study05	-1.48	[-1.90, -1.05]			_		
study06	-1.63	[-2.39, -0.88]		-			
study07	-1.02	[-1.51, -0.53]			-	_	
study08	-1.85	[-2.60, -1.11]			-		
study09	-0.98	[-1.92, -0.04]			-		
study10	-1.76	[-2.29, -1.23]					
study11	-1.10	[-1.42, -0.79]					
			10%	20%	30%	40%	50%
			pr	oportion (1	raiiure)		

• analysis on log-odds scale (proportions \approx 10–30%)

Christian Röver

- analyze using NNHM
- prior settings
 - (non-informative) uniform effect (μ) prior ⁵
 - (weakly informative) half-Normal(1.0) heterogeneity (τ) prior ⁶
- bayesmeta R package⁷

⁵C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

⁶C. Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

⁷http://cran.r-project.org/package=bayesmeta

Example Meta-analysis: overall parameters

study	estimate	95% CI	
study01	-1.50	[-2.39, -0.62]	
study02	-1.53	[-2.30, -0.77]	_
study03	-1.21	[-1.75, -0.67]	_
study04	-0.99	[-1.42, -0.55]	_
study05	-1.48	[-1.90, -1.05]	
study06	-1.63	[-2.39, -0.88]	_
study07	-1.02	[-1.51, -0.53]	-
study08	-1.85	[-2.60, -1.11]	_
study09	-0.98	[-1.92, -0.04]	_
study10	-1.76	[-2.29, -1.23]	_
study11	-1.10	[-1.42, -0.79]	_
mean	-1.31	[-1.55, -1.09]	-
			-2.5 -2 -1.5 -1 -0.5 0
Heteroger	neity (tau): 0.18	[0.00, 0.44]	log–odds (failure)

 overall mean (μ) estimate: -1.31 [-1.55, -1.09] heterogeneity (τ): 0.18 [0.00, 0.44]

proportion (logit⁻¹(μ)): 21% [18%, 25%]

Example Meta-analysis: shrinkage estimates

study	estimate	95% CI	
study01	-1.50	[-2.39, -0.62]	
study02	-1.53	[-2.30, -0.77]	
study03	-1.21	[-1.75, -0.67]	
study04	-0.99	[-1.42, -0.55]	
study05	-1.48	[-1.90, -1.05]	
study06	-1.63	[-2.39, -0.88]	
study07	-1.02	[-1.51, -0.53]	
study08	-1.85	[-2.60, -1.11]	
study09	-0.98	[-1.92, -0.04]	
study10	-1.76	[-2.29, -1.23]	
study11	-1.10	[-1.42, -0.79]	
mean	-1.31	[-1.55, -1.09]	-
			-2.5 -2 -1.5 -1 -0.5 0
Heterogen	eity (tau): 0.18	[0.00, 0.44]	log–odds (failure)

quoted estimate + shrinkage estimate

• shrinkage estimates (study-specific effects θ_i)

• joint analysis useful to support individual trials ⁸

⁸S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

study	estimate	95% CI	
study01	-1.50	[-2.39, -0.62]	
study02	-1.53	[-2.30, -0.77]	• •
study03	-1.21	[-1.75, -0.67]	
study04	-0.99	[-1.42, -0.55]	
study05	-1.48	[-1.90, -1.05]	
study06	-1.63	[-2.39, -0.88]	
study07	-1.02	[-1.51, -0.53]	_
study08	-1.85	[-2.60, -1.11]	
study09	-0.98	[-1.92, -0.04]	
study10	-1.76	[-2.29, -1.23]	
study11	-1.10	[-1.42, -0.79]	
mean	-1.31	[-1.55, -1.09]	
prediction	-1.30	[–1.88, –0.78]	
			-2.5 -2 -1.5 -1 -0.5 0
Heterogeneity	(tau): 0.18 [0.0	00, 0.44]	log-odds (failure)

quoted estimate + shrinkage estimate

• **prediction**: effect in a new ("future") trial (θ_{k+1})

 $(\text{logit}^{-1}(\theta_{k+1}): 21\% [13\%, 31\%])$

useful e.g. for trial design ⁹

⁹H. Schmidli, B. Neuenschwander, T. Friede. Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials. *Computational Statistics and Data Analysis*, **113**:100–110, 2017.

Example Meta-analysis: predicting data

• predictions θ_{k+1} imply predicted probabilities logit⁻¹(θ_{k+1})

Example Meta-analysis: predicting data

- predictions θ_{k+1} imply predicted probabilities logit⁻¹(θ_{k+1})
- for a specific trial scenario (e.g. sample size $N_{k+1} = 150$), may derive predicted **data** (event counts)
- useful for checking consistency with historical data ¹⁰

¹⁰F. M. Kluxen, K. Weber, C. Strupp, S. M. Jensen, L. A. Hothorn, J.-C. Garcin, T. Hofmann. Using historical control data in bioassays for regulatory toxicology. *Regulatory Toxicology and Pharmacology*, **126**:105024, 2021.

• overall mean (μ, τ)

- overall mean (μ , τ)
- shrinkage estimation (θ_i)

Christian Röver

• overall mean (μ , τ)

• prediction (θ_{k+1})

• shrinkage estimation (θ_i)

Christian Röver

- overall mean (μ , τ)
- shrinkage estimation (θ_i)

- prediction (parameter θ_{k+1})
- prediction (data y_{k+1})

Meta-analysis of historical data

- suppose k "historical" + 1 current studies are given, interest is in new (k+1)th study (data y_{k+1}, effect θ_{k+1})
- two possibilities:

meta-analytic-combined (MAC) approach:

meta-analytic-predictive (MAP) approach:

Meta-analysis of historical data

- suppose k "historical" + 1 current studies are given, interest is in new (k+1)th study (data y_{k+1}, effect θ_{k+1})
- two possibilities:

meta-analytic-combined (MAC) approach:

meta-analytic-predictive (MAP) approach:

(which is preferable?)

• both (MAP and MAC) approaches are equivalent: ¹¹

- analysis of (k+1)th study (estimation of θ_{k+1} using y_{k+1}) based on MAP prior may be interpreted as shrinkage estimation in a joint meta-analysis
- information of remaining studies contributed to (k+1)th shrinkage estimate is expressed through MAP prior (predictive distribution) from k studies
- example of logical consistency of Bayesian methods posterior may be factored:

$$\underbrace{p(\theta_{k+1} \mid y_1, \dots, y_{k+1})}_{\text{MAC posterior}} \propto \underbrace{p(y_{k+1} \mid \theta_{k+1})}_{\text{likelihood}} \times \underbrace{p(\theta_{k+1} \mid y_1, \dots, y_k)}_{\text{MAP prior}}$$

¹¹H. Schmidli *et al.* Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics*, **70**(4):1023–1032, 2014.

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- new study consistent with historical studies?

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

Christian Röver

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

Example Historical and current data

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- $\bullet\,$ new study consistent with historical studies? \rightarrow contrast with (MAP) predictions

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

Example Historical and current data

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- $\bullet\,$ new study consistent with historical studies? \rightarrow contrast with (MAP) predictions

- in terms of MAP prior: a "prior predictive check" 12
- may be turned into a (prior predictive) *p*-value ¹³ (here: p = 0.78)

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

Christian Röver

MAP prior and estimate (y₁₂, s₁₂) combine to form shrinkage estimate.
 (probability: 0.19 [0.14, 0.26]

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

MAP prior and estimate (y₁₂, s₁₂) combine to form shrinkage estimate.
 (probability: 0.19 [0.14, 0.26] → 0.21 [0.16, 0.25])

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- MAP prior and estimate (y₁₂, s₁₂) combine to form shrinkage estimate.
 (probability: 0.19 [0.14, 0.26] → 0.21 [0.16, 0.25])
- substantial precision gain: posterior std.dev. only $0.7 \times s_{12}$
- would otherwise require 104% increase in sample size ("156 additional patients")

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- MAP prior and estimate (y₁₂, s₁₂) combine to form shrinkage estimate.
 (probability: 0.19 [0.14, 0.26] → 0.21 [0.16, 0.25])
- substantial precision gain: posterior std.dev. only $0.7 \times s_{12}$
- would otherwise require 104% increase in sample size ("156 additional patients")
- more generally: (MAP) prior associated with "effective sample size" ¹⁴ (here: ESS_{ELIR} = 153)

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_t = 40$ events in a **treatment** group of size $N_c = 300$ ($\frac{x_t}{N_t} = 0.13$)

- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_t = 40$ events in a treatment group of size $N_c = 300$ ($\frac{x_t}{N_t} = 0.13$)
- combine "plain" estimates / combine active with control + historical

	e\	/ents	log-o	odds	log	-OR
	control	treatment	control	treatment	estimate	95% CI
RCT only	29/150	40/300	-1.43 (0.21)	-1.87 (0.17)	-0.44 (0.27)	[-0.97, 0.08]

- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_t = 40$ events in a treatment group of size $N_c = 300$ ($\frac{x_t}{N_t} = 0.13$)
- combine "plain" estimates / combine active with control + historical

	events		log-0	log-odds		log-OR		
	control	treatment	control	treatment	estimate	95% CI		
RCT only RCT + MAP	29/150 29+198 150+930	40/300 40/300	-1.43 (0.21) -1.35 (0.14)	-1.87 (0.17) -1.87 (0.17)	-0.44 (0.27) -0.52 (0.22)	[-0.97, 0.08] [-0.96, -0.09]		

- historical controls:
 - more precise control group + effect estimates
 - fewer control patients

The MAP prior Practical issues: simplification

• for practical application (communication, pre-specification, ...): "simple" summary of MAP prior required

¹⁵S. Weber, Y. Yi, J. W. Seaman, T. Kakizume, H. Schmidli. Applying meta-analytic-predictive priors with the R Bayesian evidence synthesis tools. *Journal of Statistical Software*, **100**(19):1–32, 2021.

The MAP prior Practical issues: simplification

	weight	mean	std.dev.
1	0.37	-1.29	0.11
2	0.32	-1.36	0.22
3	0.22	-1.26	0.32
4	0.09	-1.37	0.50

- for practical application (communication, pre-specification, ...):
 "simple" summary of MAP prior required
- idea: approximate by mixture distribution of few components ¹⁵ (implemented in RBesT; here: 4 normal components)

¹⁵S. Weber, Y. Yi, J. W. Seaman, T. Kakizume, H. Schmidli. Applying meta-analytic-predictive priors with the R Bayesian evidence synthesis tools. *Journal of Statistical Software*, **100**(19):1–32, 2021.

- concern: analysis hinges on **exchangeability** of historical and current trials.
- pooling of control rates challenges randomization
- **consistency** check may be implemented (e.g., prior predictive *p*-value)
 - but probably with little "power"
- to safeguard against assumption violation: anticipate potential prior/data conflict
- "robustification" ideas:
 - "more conservative" priors (heavier tails, greater variance, ...)
 - include possibility of alternative models \rightarrow mixture prior

 $p(\theta) = \begin{cases} \text{informative (MAP)} & \text{with probability } (1 - w_{\text{R}}) \\ \text{non-informative (vague)} & \text{with probability } w_{\text{R}} \end{cases}$

- latter solution commonly preferred (easily motivated, elicited, ...)
- ESS considerations etc. may again be applied

Treatment effect estimation

 shrinkage estimation also useful for treatment effects (e.g., MAP prior from earlier-phase data) ¹⁶

Figure 1. Data and results at end-of-phase II meeting.

¹⁶S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

¹⁷C. Röver, T. Friede. Dynamically borrowing strength from another study through shrinkage estimation. *Statistical Methods in Medical Research*, **29**(1):293–308, 2020.

Treatment effect estimation

 shrinkage estimation also useful for treatment effects (e.g., MAP prior from earlier-phase data) ¹⁶

study	patients	estimate	95% CI					
observational	88	-0.50	[-0.99, -0.01]		-		_	
randomized	12	-0.17	[-1.41, 1.06]	-	_	+	•	
mean		-0.43	[-1.23, 0.42]		_			_

Figure 2. Forest plot for the CJD example (log-HR outcome). The shrinkage interval for the log-HR based on randomized evidence here is [-1.16, 0.48], spanning only two-thirds of the original confidence interval width.

borrowing of information also for a (heterogeneous) pair of estimates (i.e., k = 2)¹⁷ (focus on shrinkage estimate θ₂, not overall mean μ)

¹⁶S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

¹⁷C. Röver, T. Friede. Dynamically borrowing strength from another study through shrinkage estimation. *Statistical Methods in Medical Research*, **29**(1):293–308, 2020.

- important for meta-analysis: heterogeneity prior specification (especially for few studies)
- general guidance available for non-informative ¹⁸ or weakly informative priors ¹⁹
- important aspect: empirical information what can we learn from past analyses?

¹⁸C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

¹⁹C. Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

- important for meta-analysis: heterogeneity prior specification (especially for few studies)
- general guidance available for non-informative ¹⁸ or weakly informative priors ¹⁹
- important aspect: empirical information what can we learn from past analyses?
- pooling of heterogeneity estimates tricky: hard to summarize / model
- need: joint model for "historical" meta-analyses

¹⁸C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

¹⁹C. Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

Heterogeneity prediction: the model

model DAG for *j*th meta-analysis

Heterogeneity prediction: the model

- model DAG for *j*th meta-analysis (out of several)
- idea: combine (j = 1, ..., N) meta-analyses, infer τ distribution

Heterogeneity prediction: the model

- additional overarching layer, combining N meta-analyses
- common heterogeneity distribution for τ_1, \ldots, τ_N (e.g., half-Normal(ϑ))

Heterogeneity prediction: the model

 data: N meta-analyses, each involving k_j studies, effect estimates y_{ij}, standard errors s_{ij} (i = 1,..., k_j, j = 1,..., N),

assume:

$$y_{ij}|\mu_j, \tau_j, s_{ij} \sim \text{Normal}(\mu_j, s_{ij}^2 + \tau_j^2)$$

 $\mu_j|\mu_p, \sigma_p \sim \text{Normal}(\mu_p, \sigma_p^2)$

for fixed "neutral" μ_p and "large" σ_p (\rightarrow stratification, no pooling)

• heterogeneity stage:

 $\tau_j | \vartheta \sim \mathsf{P}(\vartheta)$

for some "heterogeneity distribution" $P(\vartheta)$

- parameters: *N* means μ_j and heterogeneities τ_j ; "distribution" parameter(s) ϑ
- (hyper-) prior required for ϑ
- aim: prediction τ^{\star}

Heterogeneity prediction: the model

 data: N meta-analyses, each involving k_j studies, effect estimates y_{ij}, standard errors s_{ij} (i = 1,..., k_j, j = 1,..., N),

assume:

$$y_{ij}|\mu_j, \tau_j, s_{ij} \sim \text{Normal}(\mu_j, s_{ij}^2 + \tau_j^2)$$

 $\mu_j|\mu_p, \sigma_p \sim \text{Normal}(\mu_p, \sigma_p^2)$

for fixed "neutral" μ_p and "large" σ_p (\rightarrow stratification, no pooling)

• heterogeneity stage:

$$\tau_j | \vartheta \sim \mathsf{P}(\vartheta)$$

for some "heterogeneity distribution" $P(\vartheta)$ (e.g.: $\tau_j | \vartheta \sim half-Normal(\vartheta)$)

- parameters: *N* means μ_j and heterogeneities τ_j ; "distribution" parameter(s) ϑ
- (hyper-) prior required for ϑ
- aim: prediction τ^{\star}

(half-normal scale ϑ)

Heterogeneity prediction

- posterior: scale parameter s
- posterior predictive: $\tau^* | s \sim \text{half-Normal}(s)$

(figures from an example application)

• posterior predictive serves as "MAP" prior for new ((N+1)th) analysis

Heterogeneity prediction: simplification, "robustification"

- simplification:
 - **posterior predictive** is a **mixture distribution** $(\tau^*|\vartheta \sim \text{half-Normal}(\vartheta), \text{ with uncertain } \vartheta)$
 - half-normal example obvious parametric approximation: by half-normal, or half-normal mixture (e.g., half-Student-t distribution)
- robustification:
 - rather "conservatization" (?)
 - generally: larger τ value yields "more conservative" meta-analysis (less shrinkage, wider intervals, ...)
 - stochastically larger or heavier-tailed prior usually considered a *conservative* choice

Heterogeneity prediction: simplification, "robustification"

- original idea and first implementation: Rhodes *et al.* (2015) ²⁰ and Turner *et al.* (2015) ²¹
- general approach detailed ²²

²⁰K.M. Rhodes *et al.* Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. *Journal of Clinical Epidemiology*, **68**(1):52–60, 2015.

²¹R.M. Turner *et al.* Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. *Statistics in Medicine*, **34**(6):984–998, 2015.

²²C. Röver, S. Sturtz, J. Lilienthal, R. Bender, T. Friede. Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis. *Statistics in Medicine*, **42**(14):2439–2454, 2023.

²³J. Lilienthal, S. Sturtz, C. Schürmann, M. Maiworm, C. Röver, T. Friede, R. Bender. Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies. *Research Synthesis Methods*, **15**(2):275–287, 2024.

Heterogeneity prediction: simplification, "robustification"

- original idea and first implementation: Rhodes *et al.* (2015) ²⁰ and Turner *et al.* (2015) ²¹
- general approach detailed ²²
- applied to IQWiG data ²³ to help pre-specifying analyses in regulatory context

FIGURE 7 Posterior distributions of the half-normal scale parameter for different effect measures. Different color shades and the given numerical values indicate the 50%, 90%, and 99% quantiles, respectively.

²⁰K.M. Rhodes *et al.* Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. *Journal of Clinical Epidemiology*, **68**(1):52–60, 2015.

²¹R.M. Turner *et al.* Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. *Statistics in Medicine*, **34**(6):984–998, 2015.

²²C. Röver, S. Sturtz, J. Lilienthal, R. Bender, T. Friede. Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis. *Statistics in Medicine*, **42**(14):2439–2454, 2023.

²³J. Lilienthal, S. Sturtz, C. Schürmann, M. Maiworm, C. Röver, T. Friede, R. Bender. Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies. *Research Synthesis Methods*, **15**(2):275–287, 2024.

- hierarchical models established for meta-analysis
- Bayesian models advantageous for sparse data and advanced applications
- besides main effect: shrinkage, prediction
- MAP priors as data-informed priors
- useful in many contexts (controls, effects, nuisance parameters, ...)
- option to implement scepticism via robustification
- analogous "MAP" approach for empirically motivated heterogeneity priors