Prior distributions from meta-analytic predictions

Christian Röver

UNIVERSITÄTSMEDIZIN : UMG

Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

IBS-DR workshop "*Hierarchical models in preclinical research*" Göttingen, December 6, 2024

- the Bayesian hierarchical model
- estimating different quantities \bullet
- upstream priors and downstream likelihoods: the MAP prior \bullet
- investigating (prior) informativeness: ESS etc.
- being sceptical/conservative: anticipating prior-data conflict / robustification \bullet
- application areas:
	- predicting parameters
	- predicting data
	- predicting heterogeneity

Normal approximation for "effect measures"

- single study's outcome, often: **estimate** ± **standard error**
- \bullet **normal approximation** ("Wald" CI) often appropriate ("large" sample size within study)
- (standard errors are assumed **known**, fixed!)
- sometimes **transformations** are used—
	- improved normal approximation
	- (later: implications for "between-study" modeling)
- examples:
	- means, mean differences, standardized mean differences
	- (log-) proportions, (log-) odds
	- (log-) risk ratios, (log-) odds ratios
	- (log-) rate ratios, (log-) hazard ratios
	- (Fisher-*z* transformed) correlation coefficients

```
\bullet ...
```
Normal random effects

- variability (**heterogeneity**) between studies commonly anticipated
	- to reflect differing study characteristics
	- to implement stratification by study
	- to avoid overoptimism / naïve pooling
- especially for few studies (small *k*), heterogeneity is hard to detect (tests have low power) $¹$ </sup>
- \bullet empirically: heterogeneity commonly present 2

some amount of between-study **heterogeneity** should be anticipated ³ \bullet $(\rightarrow$ random-effects model)

¹R. J. Hardy, S. G. Thompson. Detecting and describing heterogeneity in meta-analysis. *Statistics in Medicine*, **17**(8): 841–856, 1998.

 ${}^{2}E$. Kontopantelis, D. A. Springate, D. Reeves. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. *PLoS ONE*, **8**(7):e69930, 2013.

³J. P. T. Higgins. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. *International Journal of Epidemiology*, **37**(5):1158–1160, 2008.

The generic normal-normal hierarchical model (NNHM)

- the meta-analysis **data** set:
	- \bullet effect estimates y_i $(i = 1, \ldots, k)$
	- (standard errors *sⁱ*)
- model (likelihood):

$$
y_i|\theta_i \sim \text{Normal}(\theta_i, s_i^2)
$$

$$
\theta_i|\mu, \tau \sim \text{Normal}(\mu, \tau^2)
$$

or (marginally):

$$
y_i|\mu, \tau \sim \text{Normal}(\mu, \tau^2 + s_i^2)
$$

- parameters:
	- "**study-specific effects**" θ*ⁱ*
	- "**overall mean effect**" µ
	- "heterogeneity" *τ* ≥ 0

for $\tau = 0$, reduces to common-effect model $(\tau = 0 \Rightarrow \theta_1 = \cdots = \theta_k = \mu)$

The generic normal-normal hierarchical model (NNHM)

the NNHM as a *directed acyclic graph (DAG)*: overall parameters $(\mu,\,\tau),$ study-specific effects $(\theta_i),$ data (y_i)

The generic normal-normal hierarchical model (NNHM)

the NNHM as a *directed acyclic graph (DAG)*:

 $\,$ overall parameters ($\mu,\,\tau)$, study-specific effects (θ_i), data ($\,$ y $_i$), standard errors (s_i)

Example 11 historical trials (Neuenschwander *et al.*, 2010)

example: *treatment failure* in transplantation; data from 11 "historical" **control groups** (930 patients) to support new trial ⁴

⁴B. Neuenschwander, G. Capkun-Niggli, A. Branson, D. J. Spiegelhalter. Summarizing historical information on controls in clinical trials. *Clinical Trials*, **7**(1):5–18, 2010.

Example

11 historical trials (Neuenschwander *et al.*, 2010)

• analysis on log-odds scale

Example

11 historical trials (Neuenschwander *et al.*, 2010)

• analysis on log-odds scale (proportions \approx 10–30%)

- analyze using NNHM
- **•** prior settings
	- (non-informative) uniform effect (u) prior 5
	- (weakly informative) half-Normal(1.0) heterogeneity (τ) prior 6
- **O** bayesmeta R package⁷

⁵C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

 $6C.$ Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

7 <http://cran.r-project.org/package=bayesmeta>

Example

Meta-analysis: overall parameters

• overall mean (μ) estimate: -1.31 [-1.55 , -1.09] heterogeneity (τ) : 0.18 [0.00, 0.44]

proportion (logit $^{-1}(\mu)$): 21% [18%, 25%]

Example

Meta-analysis: shrinkage estimates

quoted estimate \rightarrow shrinkage estimate

shrinkage estimates (study-specific effects θ*ⁱ*) \bullet

 \bullet joint analysis useful to support individual trials $\frac{8}{3}$

⁸S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

Example Meta-analysis: prediction

quoted estimate \rightarrow shrinkage estimate

• prediction: effect in a new ("future") trial (θ_{k+1})

(logit[−]¹ (θ*k*+1): 21% [13%, 31%])

\bullet useful e.g. for trial design 9

⁹H. Schmidli. B. Neuenschwander, T. Friede. Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials. *Computational Statistics and Data Analysis*, **113**:100–110, 2017.

Example

Meta-analysis: predicting data

predictions ^θ*k*+¹ imply predicted probabilities logit−¹ (θ*k*+1)

Example Meta-analysis: predicting data

- predictions ^θ*k*+¹ imply predicted probabilities logit−¹ (θ*k*+1)
- for a specific trial scenario (e.g. sample size $N_{k+1} = 150$), may derive predicted **data** (event counts)
- \bullet useful for checking consistency with historical data 10

¹⁰F. M. Kluxen, K. Weber, C. Strupp, S. M. Jensen, L. A. Hothorn, J.-C. Garcin, T. Hofmann. Using historical control data in bioassays for regulatory toxicology. *Regulatory Toxicology and Pharmacology*, **126**:105024, 2021.

 \bullet overall mean (μ, τ)

- \bullet overall mean (μ, τ)
- shrinkage estimation (θ*ⁱ*)

Christian Rover <u>in [Prior distributions from meta-analytic predictions](#page-0-0)</u> December 6, 2024 14/30

- overall mean (μ, τ)
- shrinkage estimation (θ*ⁱ*) \bullet

• prediction (θ_{k+1})

Christian Rover **Trior Christian Rover Christian Rover 14** / 30 [Prior distributions from meta-analytic predictions](#page-0-0) **December 6, 2024** 14 / 30

The NNHM Aims of analysis

- overall mean (μ, τ) \bullet
- shrinkage estimation (θ*ⁱ*) \bullet
- **•** prediction (parameter θ_{k+1})
- \bullet prediction (data y_{k+1})

Christian Rover **Trior Christian Rover Christian Rover 14** / 30 [Prior distributions from meta-analytic predictions](#page-0-0) **December 6, 2024** 14 / 30

Meta-analysis of historical data MAP vs. MAC

- suppose *k* "historical" + 1 current studies are given, interest is in new $(k+1)$ th study (data y_{k+1} , effect θ_{k+1})
- two possibilities: \bullet

Meta-analysis of historical data MAP vs. MAC

- suppose *k* "historical" + 1 current studies are given, interest is in new $(k+1)$ th study (data y_{k+1} , effect θ_{k+1})
- two possibilities: \bullet

(which is preferable?)

- both (MAP and MAC) approaches are **equivalent**: 11
	- analysis of $(k+1)$ th study (estimation of θ_{k+1} using γ_{k+1}) based on MAP prior may be interpreted as shrinkage estimation in a joint meta-analysis
	- \bullet information of remaining studies contributed to $(k+1)$ th shrinkage estimate is expressed through MAP prior (predictive distribution) from *k* studies
- example of logical consistency of Bayesian methods posterior may be factored:

$$
\underbrace{p(\theta_{k+1} | y_1, \ldots, y_{k+1})}_{\text{MAC posterior}} \propto \underbrace{p(y_{k+1} | \theta_{k+1})}_{\text{likelihood}} \times \underbrace{p(\theta_{k+1} | y_1, \ldots, y_k)}_{\text{MAP prior}}
$$

¹¹H. Schmidli *et al.* Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics*, **70**(4):1023–1032, 2014.

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- o new study consistent with historical studies?

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

Example Historical and current data

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$) \bullet
- new study consistent with historical studies? \rightarrow contrast with (MAP) predictions \bullet

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

Example Historical and current data

- *new* trial yields $x_c = 29$ events in a control group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$) \bullet
- new study consistent with historical studies? \rightarrow contrast with (MAP) predictions \bullet

- in terms of MAP prior: a "**prior predictive check**" 12
- may be turned into a (prior predictive) p -value ¹³ (here: $p = 0.78$)

¹²A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin. *Bayesian data analysis*. Chapman & Hall / CRC, 2014.

¹³X. L. Meng. Posterior predictive *p*-values. *The Annals of Statistics*, **22**(3), 1142–1160, 1994.

Christian Röver <u>in the Schristian Rover in Prior</u> distributions from meta-analytic predictions December 6, 2024 17/30

• MAP prior and estimate (y_{12}, s_{12}) combine to form shrinkage estimate. (probability: 0.19 [0.14, 0.26]

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

• MAP prior and estimate (y_{12}, s_{12}) combine to form shrinkage estimate. (probability: 0.19 [0.14, 0.26] \rightarrow 0.21 [0.16, 0.25])

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- MAP prior and estimate (y_{12}, s_{12}) combine to form shrinkage estimate. (probability: 0.19 [0.14, 0.26] \rightarrow 0.21 [0.16, 0.25])
- substantial precision gain: posterior std.dev. only $0.7 \times s_{12}$
- would otherwise require 104% increase in sample size ("156 additional patients")

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- MAP prior and estimate (y_{12}, s_{12}) combine to form shrinkage estimate. (probability: 0.19 [0.14, 0.26] \rightarrow 0.21 [0.16, 0.25])
- substantial precision gain: posterior std.dev. only $0.7 \times s_{12}$
- would otherwise require 104% increase in sample size ("156 additional patients")
- more generally: **(MAP) prior** associated with "**effective sample size**" 14 \bullet (here: $ESS_{\text{EIB}} = 153$)

¹⁴B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan. Predictively consistent prior effective sample sizes. *Biometrics*, **76**(2):578.587, 2020.

- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_{\rm t} = 40$ events in a treatment group of size $\mathcal{N}_{\rm c} = 300$ ($\frac{x_{\rm t}}{\mathcal{N}_{\rm t}} = 0.13$)
- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_{\rm t} = 40$ events in a treatment group of size $\mathcal{N}_{\rm c} = 300$ ($\frac{x_{\rm t}}{\mathcal{N}_{\rm t}} = 0.13$) \bullet
- \bullet combine "plain" estimates / combine active with control + historical

- new trial yields $x_c = 29$ events in a **control** group of size $N_c = 150$ ($\frac{x_c}{N_c} = 0.19$)
- active arm: $x_{\rm t} = 40$ events in a treatment group of size $\mathcal{N}_{\rm c} = 300$ ($\frac{x_{\rm t}}{\mathcal{N}_{\rm t}} = 0.13$) \bullet
- \bullet combine "plain" estimates / combine active with control + historical

- historical controls: \bullet
	- \bullet more precise control group $+$ effect estimates
	- fewer control patients

The MAP prior Practical issues: simplification

 \bullet for practical application (communication, pre-specification, ...): "simple" summary of MAP prior required

¹⁵S. Weber, Y. Yi, J. W. Seaman, T. Kakizume, H. Schmidli. Applying meta-analytic-predictive priors with the R Bayesian evidence synthesis tools. *Journal of Statistical Software*, **100**(19):1–32, 2021.

The MAP prior Practical issues: simplification

- \bullet for practical application (communication, pre-specification, ...): "simple" summary of MAP prior required
- idea: approximate by **mixture distribution** of few components ¹⁵ (implemented in RBesT; here: 4 normal components)

¹⁵S. Weber, Y. Yi, J. W. Seaman, T. Kakizume, H. Schmidli. Applying meta-analytic-predictive priors with the R Bayesian evidence synthesis tools. *Journal of Statistical Software*, **100**(19):1–32, 2021.

- concern: analysis hinges on **exchangeability** of historical and current trials.
- pooling of control rates challenges randomization
- **consistency** check may be implemented (e.g., prior predictive *p*-value) \bullet
	- but probably with little "power"
- to safeguard against assumption violation: anticipate potential **prior/data conflict**
- "**robustification**" ideas:
	- \bullet "more conservative" priors (heavier tails, greater variance, ...)
	- include possibility of alternative models → **mixture prior**

 $p(\theta) = \begin{cases}$ informative (MAP) with probability (1 − *w*_R) non-informative (vague) with probability w_R

- latter solution commonly preferred (easily motivated, elicited, . . .) \bullet
- ESS considerations etc. may again be applied

Treatment effect estimation

shrinkage estimation also useful for treatment **effects** (e.g., MAP prior from earlier-phase data) 16

Figure 1. Data and results at end-of-phase II meeting.

¹⁶S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

¹⁷C. Röver. T. Friede. Dynamically borrowing strength from another study through shrinkage estimation. *Statistical Methods in Medical Research*, **29**(1):293–308, 2020.

Treatment effect estimation

shrinkage estimation also useful for treatment **effects** (e.g., MAP prior from earlier-phase data) 16

Figure 2. Forest plot for the CID example (log-HR outcome). The shrinkage interval for the log-HR based on randomized evidence here is [-1.16, 0.48], spanning only two-thirds of the original confidence interval width.

borrowing of information also for a (heterogeneous) **pair** of estimates (i.e., $k = 2$) ¹⁷ \bullet

(focus on shrinkage estimate θ_2 , not overall mean μ)

 16 S. Wandel. B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, **14**(3):277–285, 2017.

¹⁷C. Röver. T. Friede. Dynamically borrowing strength from another study through shrinkage estimation. *Statistical Methods in Medical Research*, **29**(1):293–308, 2020.

- important for meta-analysis: heterogeneity **prior** specification (especially for few studies)
- \bullet general guidance available for non-informative 18 or weakly informative priors 19
- important aspect: empirical information *what can we learn from past analyses?*

¹⁸C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

¹⁹C. Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

- important for meta-analysis: heterogeneity **prior** specification (especially for few studies)
- \bullet general guidance available for non-informative 18 or weakly informative priors 19
- important aspect: empirical information *what can we learn from past analyses?*
- pooling of heterogeneity *estimates* tricky: hard to summarize / model
- need: joint model for "historical" meta-analyses

¹⁸C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. *Journal of Statistical Software*, **93**(6), 2020.

¹⁹C. Röver, R. Bender, S. Dias, C. H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Research Synthesis Methods*, **12**(4):448–474, 2021.

Heterogeneity prediction: the model

model DAG for *j*th meta-analysis

Heterogeneity prediction: the model

- model DAG for *j*th meta-analysis (out of several)
- idea: combine $(j = 1, ..., N)$ meta-analyses, infer τ distribution

Heterogeneity prediction: the model

- additional overarching layer, combining *N* meta-analyses \bullet
- common heterogeneity distribution for τ_1, \ldots, τ_N (e.g., half-Normal(ϑ)) \bullet

Heterogeneity prediction: the model

data: *N* meta-analyses, each involving *k^j* studies, effect estimates *yij*, standard errors *sij* (*i* = 1, . . . , *k^j* , *j* = 1, . . . , *N*),

assume: \bullet

$$
y_{ij}|\mu_j, \tau_j, s_{ij} \sim \text{Normal}(\mu_j, s_{ij}^2 + \tau_j^2)
$$

$$
\mu_j|\mu_p, \sigma_p \sim \text{Normal}(\mu_p, \sigma_p^2)
$$

for fixed "neutral" $\mu_{\rm p}$ and "large" $\sigma_{\rm p}$ (\rightarrow stratification, no pooling)

heterogeneity stage:

 $\tau_j|\vartheta\>\sim\> {\sf P}(\vartheta)$

for some "heterogeneity distribution" $P(\vartheta)$

- $\bm{{\mathsf{parameters}}}$: $\bm{\mathsf{N}}$ means μ_j and heterogeneities τ_j ; "distribution" parameter(s) ϑ
- \bullet (hyper-) **prior** required for ϑ
- **aim**: prediction $τ^*$

Heterogeneity prediction: the model

data: *N* meta-analyses, each involving *k^j* studies, effect estimates *yij*, standard errors *sij* (*i* = 1, . . . , *k^j* , *j* = 1, . . . , *N*),

assume: \bullet

$$
y_{ij}|\mu_j, \tau_j, s_{ij} \sim \text{Normal}(\mu_j, s_{ij}^2 + \tau_j^2)
$$

$$
\mu_j|\mu_p, \sigma_p \sim \text{Normal}(\mu_p, \sigma_p^2)
$$

for fixed "neutral" $\mu_{\rm p}$ and "large" $\sigma_{\rm p}$ (\rightarrow stratification, no pooling)

heterogeneity stage:

$$
\tau_j|\vartheta \sim \, \mathsf{P}(\vartheta)
$$

for some "heterogeneity distribution" $P(\vartheta)$ $(\mathsf{e.g.} : \tau_i | \vartheta \sim \mathsf{half}\text{-}Normal(\vartheta))$

- $\bm{{\mathsf{parameters}}}$: $\bm{\mathsf{N}}$ means μ_j and heterogeneities τ_j ; "distribution" parameter(s) ϑ
- (hyper-) **prior** required for ϑ (half-normal scale ϑ)
- **aim**: prediction $τ^*$

Heterogeneity prediction

- posterior: scale parameter *s*
- posterior predictive: τ ⋆ |*s* ∼ half-Normal(*s*) \bullet

(figures from an example application)

posterior predictive serves as **"MAP" prior** for new ((*N*+1)th) analysis

Heterogeneity prediction: simplification, "robustification"

- **•** simplification:
	- **posterior predictive** is a **mixture distribution** $\overline{(\tau^{\star}| \vartheta \sim \mathsf{half}\text{-}\mathsf{Normal}(\vartheta), \mathsf{with} \mathsf{uncertain} \vartheta)}$
	- half-normal example obvious parametric approximation: by half-normal, or half-normal mixture (e.g., half-Student-*t* distribution)
- robustification:
	- rather "conservatization" (?)
	- **e** generally: larger τ value yields "more conservative" meta-analysis (less shrinkage, wider intervals, . . .)
	- stochastically larger or heavier-tailed prior usually considered a *conservative* choice

Heterogeneity prediction: simplification, "robustification"

- original idea and first implementation: Rhodes *et al.* (2015)²⁰ and Turner *et al.* (2015) ²¹
- \degree general approach detailed 22

²⁰K.M. Rhodes *et al.* Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. *Journal of Clinical Epidemiology*, **68**(1):52–60, 2015.

²¹R.M. Turner *et al.* Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. *Statistics in Medicine*, **34**(6):984–998, 2015.

 22 C. Röver, S. Sturtz, J. Lilienthal, R. Bender, T. Friede. Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis. *Statistics in Medicine*, **42**(14):2439–2454, 2023.

 23 J. Lilienthal, S. Sturtz, C. Schürmann, M. Maiworm, C. Röver, T. Friede, R. Bender. Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies. *Research Synthesis Methods*, **15**(2):275–287, 2024.

Heterogeneity prediction: simplification, "robustification"

- original idea and first implementation: Rhodes *et al.* (2015)²⁰ and Turner *et al.* (2015) ²¹
- \degree general approach detailed 22
- \bullet applied to IQWiG data 23 to help pre-specifying analyses in regulatory context

mal scale parameter for different effect measures. Different color shades and

²⁰K.M. Rhodes *et al.* Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. *Journal of Clinical Epidemiology*, **68**(1):52–60, 2015.

²¹R.M. Turner *et al.* Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. *Statistics in Medicine*, **34**(6):984–998, 2015.

 22 C. Röver, S. Sturtz, J. Lilienthal, R. Bender, T. Friede. Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis. *Statistics in Medicine*, **42**(14):2439–2454, 2023.

 23 J. Lilienthal, S. Sturtz, C. Schürmann, M. Maiworm, C. Röver, T. Friede, R. Bender. Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies. *Research Synthesis Methods*, **15**(2):275–287, 2024.

- **hierarchical models** established for meta-analysis
- **Bayesian** models advantageous for sparse data and advanced applications \bullet
- besides main effect: **shrinkage**, **prediction** \bullet
- **MAP priors** as data-informed priors \bullet
- useful in many contexts (controls, effects, nuisance parameters, . . .)
- \bullet option to implement scepticism via **robustification**
- analogous "MAP" approach for empirically motivated **heterogeneity priors**