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Data sharing in methodological statistical research

• Different types of research
• Applied research (e.g. clinical research): Use statistical methods to address a research
question

• Methodological statistical research: Development and evaluation of statistical methods

• Data sharing in methodological statistical research

• Sharing of data sets used to develop and evaluate statistical methods: Often not as
problematic as for applied research

• Sharing/reporting of other types of “data” (e.g., code, how the multiplicity of
design/analysis options in benchmark studies was addressed, variability of results): Still
not common practice
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Illustrating the multiplicity of design
and analysis options in benchmark
studies



Example benchmark study: Survival prediction using multi-omics data

• Benchmark studies comparing the performance of different statistical methods based on
real/simulated data are an essential part of methodological statistical research

• Example study: Herrmann et al. (2021). Large-scale benchmark study of survival prediction
methods using multi-omics data. Briefings in Bioinformatics, 22(3), bbaa167.
→ Comparison of 13 survival prediction methods (incl. Lasso, CoxBoost, blockForest, Cox
regression)

Choice Herrmann et al. (2021)

Alternative options

Data sets 18 real data sets with 5 multi-omics
groups, n ≥ 100, ≥ 5% eff. cases

n, ne, p, clin < or ≥ than
median of orig. 18 data sets

Primary performance
measure Integrated Brier score

Uno’s C-index

Missing performance
values Ad-hoc 20%-threshold rule

Weighted, random, mean

Aggregation across data
sets Mean

Median, rank, best0.05
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Multiplicity of design and analysis options in benchmark studies

• Multiplicity of different options when designing and analysing a benchmark study (data sets,
DGPs, evaluation criteria, etc.)

• Possible consequences caused by the multiplicity of options
• Researchers might be concerned about how their choices affect the results
• Researchers might (subconsciously) modify the benchmark study until it yields a
favourable/reasonable result→ risk of optimistic bias
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Exploiting the multiplicity of different design and analysis options

Choice Herrmann et al. (2021) Alternative options No. of options

Data sets
18 real data sets with 5
multi-omics groups, n ≥ 100,
≥ 5% eff. cases

n, ne, p, clin < or ≥
than median of orig. 18
data sets

9

Primary performance
measure Integrated Brier score Uno’s C-index 2

Missing performance
values Ad-hoc 20%-threshold rule Weighted, random,

mean 4

Aggregation across
data sets Mean Median, rank, best0.05 4

=288

·

·

·

·

• In total: 288 combinations of design and analysis options

• Compare the resulting 288 rankings of the 13 survival prediction methods
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Overall variability of method rankings
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Ranking results based on 288 different combinations of 
data sets, performance measure, imputation method and aggregation method

→ Any method can achieve almost any rank
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Stepwise optimisation

“No researcher would try all possibilities.” → Stepwise optimisation
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Assessing the impact of individual
design and analysis choices



Impact of individual design and analysis choices
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Choice of data sets

blockForest

Clinical only

CoxBoost

CoxBoost favoring

glmboost

grridge

ipflasso

Kaplan−Meier

Lasso

prioritylassoprioritylasso favoring

ranger

rfsrc

blockForest

Clinical only

CoxBoost

CoxBoost favoring

glmboost

grridge

ipflasso

Kaplan−Meier

Lasso

prioritylassoprioritylasso favoring

ranger

rfsrc

−1.0 −0.5 0.0 0.5 1.0
Dimension 1

−1.0 −0.5 0.0 0.5 1.0
Dimension 1

option

all

clin large

clin small

n large

n small 

ne large

ne small

p large

p small

• Locate methods and option
combinations such that distances
between them correspond to ranks
using multidimensional unfolding

For each design or analysis choice:
• Colour each point according to the
option that was used in the
respective combination

• Connect each point representing the
option used in Herrmann et al. (2021)
to points representing alternative
options given that the other three
choices remain the same
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Conclusion

• Results of benchmark studies can be highly variable with respect to design and analysis
choices→ risk of introducing an optimistic bias

• Reporting of variability using the multidimensional unfolding approach→ graphical
assessment of results with respect to a large number of different combinations of design and
analysis options
• Intuitive overview of the variability of results
• Identification of critical choices that substantially affect the results and should be
investigated in more detail
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Thank you!
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