

# A machine learning approach to identify regulatory SNPs based on genotyping data in *Vicia faba*

FELIX HEINRICH



#### Contents

- 1. Vicia faba
- 2. Regulatory SNPs
- 3. Identification of regulatory SNPs



# Vicia faba

- Faba bean (*Vicia faba*) is a grain legume
- Globally grown as livestock feed as well as for human consumption
- Several agro-ecological advantages:
  - Nitrogen symbiosis
  - Diversifying crop rotations
  - Possible replacement for imported products like soybean
- Despite advantages restricted usage due to anti-nutrients vicine and convicine



Rasbak, CC BY-SA 3.0 (https://de.wikipedia.org/wiki/Ackerbohne)



peautifulcataya, flickr, CC BY-NC-ND 2.0 www.pflanzen-lexikon.com/index.php?a=vicia-faba)

(Cooper et al., 2017; Khazaei et al., 2021)



# Vicine and Convicine (V+C)

- Vicine and convicine are anti-nutrients occurring in the seeds of Vicia faba
- Negative effects on livestock as well as humans
- Breeding varieties with low V+C is a major area of research
- Responsible genes and mechanisms controlling V+C have been unknown for a long time
- Research is difficult
  - Reference genome for *Vicia faba* only available since 2023
  - V+C is (nearly) exclusive to Vicia faba

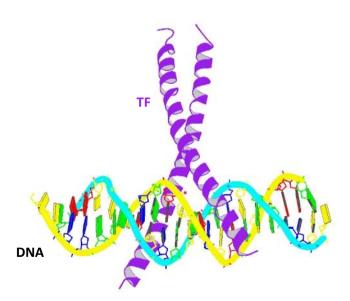
(Cooper et al., 2017; Khazaei et al., 2021; Björnsdotter et al., 2021)



## Previous work on Vicia faba

- Sequence reads for 20 Vicia faba lines through genotyping by sequencing
- Assembly of a partial genome and variant calling
  - 685,215 SNPs
- GWAS to test association of SNPs with V+C
  - 2 SNPs showed very strong association
- Next : Identify regulatory SNPs

(Heinrich et al., 2020)



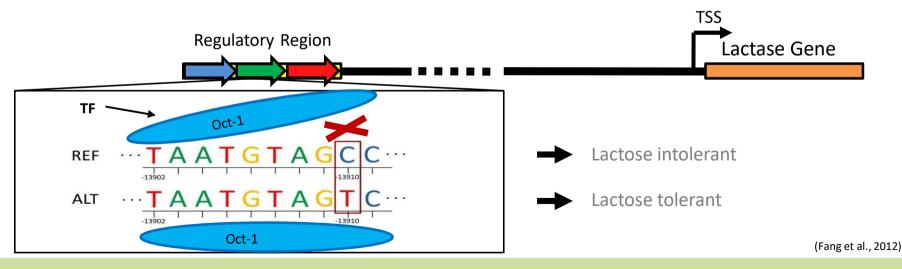

# Regulatory SNPs (rSNPs)

- SNPs located in the non-coding, regulatory regions of genes
- Affect the phenotype through effects on the level of gene expression
- Interaction with different types of regulatory elements e.g. the binding of transcription factors
- Allow us to understand the underlying regulatory pathways leading to specific traits
- Here, we will focus on rSNPs that affect the binding of transcription factors



## **Transcription Factors (TFs)**




- TFs are a special class of gene regulatory proteins
- They bind to specific motifs in the DNA sequence, so called transcription factor binding sites
- TFs influence the transcription of a gene

(Maston et al., 2006)



#### Example for gene regulation through rSNP

- Most adults cannot metabolize lactose since they no longer produce lactase
- Those who can, have the alternative allele of a specific SNP
- The change in the DNA sequence allows the binding of a TF and with that the production of lactase





# Identification of regulatory SNPs

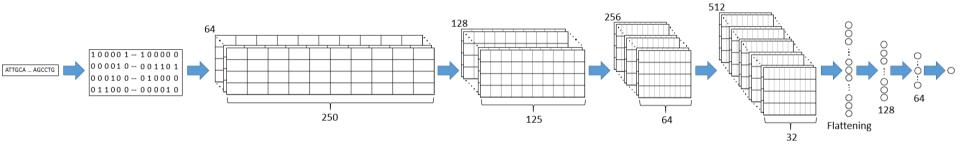
- 1. Identify SNPs that are located in regulatory regions / promoters
- 2. Predict the transcription factor binding sites surrounding these SNPs for both alleles
- 3. If the binding sites differ with respect to the predicted binding affinity between the alleles, then the SNP is a rSNP
  - Potential regulatory effect on gene expression



#### Identification of regulatory SNPs

- 0. Classify genome sequences as promoter or non-promoter using a Convolutional Neural Network
- 1. Identify SNPs that are located in regulatory regions / promoters
- 2. Predict the transcription factor binding sites surrounding these SNPs for both alleles
- 3. If the binding sites differ with respect to the predicted binding affinity between the alleles, then the SNP is a rSNP
  - Potential regulatory effect on gene expression




## Convolutional Neural Networks (CNNs)

- Special type of neural networks
- DNA is encoded as 4-dimensional vector
- Multiple filter matrices are moved across the input
- At each position a value is calculated
- Suitable for data with temporal/spatial structures
- No manual feature preparation necessary



Department of Animal Sciences Breeding Informatics

#### **CNN for Promoter Classification**



- Input is a 250bp sequence
- Output is
  - 1 for promoter
  - 0 for non-promoter

(Heinrich et al., 2020)



## Training the network

- Training requires sequences of known promoters and non-promoters
- Vicia faba did not have an annotated reference genome
  - No known promoters available



## Training the network

- Training requires sequences of known promoters and non-promoters
- *Vicia faba* did not have an annotated reference genome
  - No known promoters available
- Promoters of closely related species share similar structures
  - Monocot plants have similar promoters
  - Dicot plants have similar promoters
- 7 species belonging to the Leguminosae family have annotated reference genomes

(Kumari et al., 2013)



#### Promoter classification across species

| Evaluated<br>Trained     | Glycine<br>max | Lupinus<br>angustifolius | Medicago<br>truncatula | Phaseolus<br>vulgaris |
|--------------------------|----------------|--------------------------|------------------------|-----------------------|
| Glycine max              | 0.864          | 0.915                    | 0.847                  | 0.863                 |
| Lupinus<br>angustifolius | 0.611          | 0.981                    | 0.720                  | 0.586                 |
| Medicago<br>truncatula   | 0.797          | 0.959                    | 0.876                  | 0.789                 |
| Phaseolus<br>vulgaris    | 0.842          | 0.888                    | 0.834                  | 0.898                 |

(Heinrich et al., 2020)



# Promoter classification for Vicia faba

- Final model trained on
  - Medicago truncatula
  - Lupinus angustifolius
  - Additional negative sets
- Classification of the Vicia faba sequences
  - 2.46% of the sequences are classified as promoters
  - 19% of SNPs are located in promoters

(Heinrich et al., 2020)



## Identification of regulatory SNPs

- 2. Predict the transcription factor binding sites surrounding these SNPs for both alleles
- 3. If the binding sites differ with respect to the predicted binding affinity between the alleles, then the SNP is a rSNP

Reference ATTTCCGTAGCCTATTGCCTAGCTCATGCCAACAATGGGGGTCCTACGTAGC Alternative ATTTCCGTAGCCTATTGCCTAGCTCGTGCCAACAATGGGGGTCCTACGTAGC TFs



# Regulatory SNPs in Vicia faba

- 14 regulatory SNPs in region associated with V+C
- Both previously identified strongly associated SNPs are rSNPs
  - First SNP has a weak effect on TF binding
  - Second SNP has a very strong effect causing different TFs to bind
- TF which binding is disrupted by second SNP is related to seed coat development
  - Suggested site of biosynthesis for V+C



#### Summary

- Regulatory SNPs are an important aspect to understand the regulatory elements like TFs leading to specific traits
- Identification of rSNPs is difficult if an annotated reference genome is missing
- Known promoters/non-promoters from related species solve this problem
- Identified multiple rSNPs for *Vicia faba* 
  - Strongly with V+C associated rSNP influences binding of TF related to potential site of V+C biosynthesis



# Thank you for your attention!

#### **Questions?**



## References

- Heinrich, Felix, et al. "Identification of regulatory SNPs associated with vicine and convicine content of Vicia faba based on genotyping by sequencing data using deep learning." Genes 11.6 (2020): 614.
- Klees, Selina, et al. "agReg-SNPdb: A Database of Regulatory SNPs for Agricultural Animal Species." Biology 10.8 (2021): 790.
- Umarov, Ramzan Kh, and Victor V. Solovyev. "Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks." PloS one 12.2 (2017): e0171410.
- Kumari, Sunita, and Doreen Ware. "Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots." PloS one 8.10 (2013): e79011.
- Fang, Lin, et al. "The human lactase persistence-associated SNP- 13910\* T enables in vivo functional persistence of lactase promoter-reporter transgene expression." Human genetics 131.7 (2012): 1153-1159.
- Maston, Glenn A., Sara K. Evans, and Michael R. Green. "Transcriptional regulatory elements in the human genome." Annu. Rev. Genomics Hum. Genet. 7 (2006): 29-59.
- Cooper, James W., et al. "Enhancing faba bean (Vicia faba L.) genome resources." Journal of Experimental Botany 68.8 (2017): 1941-1953.
- Khazaei, Hamid, et al. "Recent advances in faba bean genetic and genomic tools for crop improvement." Legume Science 3.3 (2021): e75.
- Björnsdotter, Emilie, et al. "VC1 catalyses a key step in the biosynthesis of vicine in faba bean." *Nature plants* 7.7 (2021): 923-931.