DR-IBS: AG Landwirtschaftliches Versuchswesen,
Monheim Juni 29, 2023
Statistical design and analysis of field trials on
non-target species
Alternatives to OECD-decision tree

Ludwig A. Hothorn 31867 Lauenau (retired from Leibniz University Hannover). E-mail: *ludwig@hothorn.de*. Homepage: www.hothorn.de

June 22, 2023

Structure I

- Possible effect of new agro-chemicals on non-target species in randomized field trials ⇒ small sample sizes issues inherently (not only power!)
- Design: i) CRD, ii) $n_i = 6$ pre-defined by OECD guidance (follow strictly!), iii) C+, C_1 , ..., C_3 , C+, iv) multiple sampling times T_0 , T_t , v) many primary multiple count endpoints (mostly solicited, unsolicited) and their taxonomic aggregations (serious multiplicity issue!)
- Actually a proof of safety, i.e. non-inferiority tests (clearly a directional hypothesis) or better confidence limits. But species-specific tolerable thresholds ξ_p unknown. Therefore proof of hazard with all the nice confusions, e.g. *'The absence of evidence is no evidence of absence'* (Altman/Bland)

An example I

Figure: Ascidea abundance example data

OECD decision tree I

OECD decision tree II

*Williams test and Step-down-Jonckheere Terpstra test requires monotone dose-response

Issues of the OECD decision tree I

- 2 primary endpoints- differently scaled
- ullet Abundances: cutpoint $\mu=5$ taken from a very old textbook. Hard to defined so simple
- General pre-test/post test dilemma: lack-of-fit tests controlling the less relevant error rate. Equivalence tests needed with a pre-defined tolerance threshold...
- Both test on normality and variance homogeneity too low power for small n_i's
- Alternative test not comparable (e.g. quite different effect sizes)
- Such decision trees should not be recommended at all.
 Alternative: well-chosen, robust tests

Why several concentrations? I

- Assuming Paracelsus law: All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison
- OECD propose statistically two quite different approaches: NOEC, BMD
- See Zhenglei's talk on BMD in ecotox
- Both approaches with pros and cons. In the following NOEC only here

Estimate NOEC I

- NOEC depends on the unadjusted effect size δ . Yes, it should. But also on $n_i, s_i, C_k, \Delta C_i, \ldots$
- OECD design recommendation represents a sort of standardization of this point-zero-null-hypotheses tests
- First impulse: ordered concentrations require order restricted tests (to increase power)
- BUT-they use aggregations of C_i and this biased NOEC estimation. Williams trend test as a simple example for a specific decreasing plateau-shaped profile:

$$H_1: \mu_0 = 5 > \mu_1 = 3 < \mu_2 = 4 > \mu_3 = 3.5$$
:

$\pi_{Du_1=0}$	$\pi_{Du_{2-0}}$	$\pi_{Du_{3-0}}$	$\pi_{Wi_{1-0}}$	$\pi_{Wi_{2-0}}$	$\pi_{W_{i_3-0}}$
0.90	0.11	0.66	0.71	0.71	0.83

Table: Per-pair powers of Dunnett and Williams test for a simulated specific plateau-shaped alternative

Estimate NOEC II

- Notice, the per-pair power is relevant for NOEC, whereas any-pairs power is commonly published
- Alternative: Dunnett test.
- But Dunnett test may be biased when heterogeneous variances occur- problematic when in the non-NOEC concentrations
- An example- compared with unbiased Welch-type-df modification:

Estimate NOEC III

NOEC	s _i ↑	Original Dunnett			Welch-type Dunnett		
		D_{1-0}	D_{2-0}	D_{3-0}	W_{1-0}	W_{2-0}	W_{3-0}
2	-	0.02	0.02	0.89	0.02	0.02	0.85
2	3	0.00	0.00	0.35	0.02	0.02	0.15
2	2	0.00	0.07	0.23	0.02	0.02	0.83
2	1	0.07	0.01	0.24	0.02	0.01	0.82
2	0	0.07	0.07	0.37	0.03	0.03	0.21
1	-	0.02	0.89	0.88	0.93	0.84	0.83
1	3	0.00	0.24	0.38	0.02	0.83	0.14
1	2	0.00	0.36	0.22	0.02	0.13	0.83
1	1	0.08	0.24	0.24	0.02	0.82	0.82
1	0	0.07	0.36	0.37	0.03	0.19	0.20
0	-	0.90	0.91	0.89	0.97	0.85	0.85
0	3	0.26	0.24	0.36	0.82	0.84	0.15
0	2	0.23	0.36	0.23	0.82	0.14	0.81
0	1	0.38	0.25	0.24	0.15	0.82	0.82
0	0	0.41	0.36	0.35	0.20	0.19	0.20

Table: Simulated per-pair power estimates of Dunnett and Welch-type Dunnett procedure for selected NOEC's and patterns of variance heterogeneity: fair power loss; bias

Estimate NOEC IV

 Recommendation: Estimate NOEC neither by Williams, nor by original Dunnett

use Welch/sandwich modifications!

Count data issues I

- Two primary endpoints per taxonomic level: i) abundance, ii) biomass. 1st count, 2nd continuous
- Empirically heterogeneous variances are observed
- For count data we have TWO related effects:
 - overdispersion for the count variable in itself
 - varying overdispersion with concentration -analogous to heteroscedasticity

Count data issues II

- UBA itself:

- Really challenging: evaluation of overdispersed count data in low n_i and k+1 designs!

OECD proposed test: CPCAT I

- CPCAT based on 2 principles:
 - **1** CP: Closed testing procedure for comparing C_i 's vs. C-
 - ② CAT: permutative version of LR-test for comparing Poisson distributed counts
- CPCAT's main idea: feasible for small sample sizes count data
- CP-part ok, but does not provide (interpretable) confidence intervals
- CAT part problematic when data overdispersed.... and some data are severe overdispersed
- OECD: 'The theoretical distribution assumption of earthworm abundance field test data follows a Poisson model'. Violates basic stats paradigm. 'All models are wrong, some are useful' G.Box

OECD proposed test: CPCAT II

- Aggregated data: i) over 4 traps, ii) over taxa.
 - ➤ **Stats**: The sum over Poisson variables is only Poisson for complete independence [1]. But they are dependent per definition
 - ► **Empirical**: UBA data reveal both under and overdispersion, rarely near-to-Poisson data in histor. data [2]
 - ► CP-CAT: 'over-dispersion reduced the statistical power of the CPCAT' Lehmann et al. 2018.

Special features:

- ▶ small n_i
- not just overdispersion, but concentration-specific dispersions similar to variance heterogeneity in Gaussian models

Distrib.	MLT	Nonpar.	CPCAT	
Poisson	0.05	0.05	0.04	
over under	0.05	0.07	0.13	
under	0.06	0.05	0.03	

OECD proposed test: CPCAT III

- Properties of CPCAT
 - Falsely small p-values when data are overdispersed- i.e. in the most cases
 - Falsely large p-values when data are underdispersed- i.e. in some cases
 - Appropriate p-values when data are exactly Poisson distributed i.e. in rare case

OECD proposed test: CPCAT IV

• Empirical power (Without FWER control(); max power)

True NOEC	Distrib.	MLT	Nonpar.	CPCAT
3	Poisson	0.76	0.82	0.82
3	over	0.58	0.60	(0.69)
3	under	0.83	0.88	0.67
2	Poisson	0.89	0.93	0.91
2	over	0.76	0.83	(0.88)
2	under	0.90	0.94	0.90
1	Poisson	0.92	0.95	0.96
1	over	0.86	0.94	(0.96)
1	under	0.94	0.95	0.97

My advice: do not use CPCAT for routine analysis

Alternatives I

- Alternative I: Dunnett test, modified against variance heterogeneity using Welch-type df's [3]
- Alternative II: Nonparametric Dunnett-type test based on global ranks for relative effect sizes [5]. Can be used for both not-rare abundances and biomass
- Alternative III: Dunnett-type test based on most likely transformations sensitive for location/scale/shape effects [4]
- Use simultaneous two-sided $(1-2\alpha)$ confidence intervals: i) proof of hazard and safety, ii) decreasing effect at any monitoring time, possible followed by an increase later

A joint approach: abundance example I

 The abundances of Ascidea in a complete randomized field trial using control and three concentrations (1,2,3,4)

- Nonparametric Dunnett-type test based on global ranks for relative effect sizes [5].
- The confidence intervals for log odds ratios versus control as effect size are presented for each sampling time (including pre-sampling T0):

A joint approach: abundance example II

A joint approach: abundance example III

- At pre-sampling time T0 near-to-equivalence can be concluded, i.e. no serious randomization bias occurred
- Already at T1 a significant decrease of the abundance in each of the concentration occurred, lasting until T3
- Starting at T4 a recovery effect can be observed, which becomes more pronounced at T5, 6.

Take home message I

- Estimate NOEC or BMD. The 1st is data- and design-dependent, the 2nd requires species-specific benchmark thresholds (BMR)
- Neither use CP-CAT nor Dunnett original test (nor any of the OECD proposed tests)
- Use the nonparametric Dunnett-type procedure: robust against variance heterogeneity and overdispersion
- Use confidence limits
- Further issue: KOVAR using pre-sampling data (under work)
- Related R-code available

Appendix: How to model the various sampling times T_t ? I

- First impuls: repeated measures analyses by mixed effect model or summarizing approaches (AUC) or even multivariate tests. NO!
- Second: using both T₀ AND T_t -separately
 - ► T₀ approach I): OECD recommends- demonstrate in each treatment group (before substance administration) a sufficient abundance. Using one-sided CI
 - ▶ T_0 approach II): OECD recommends- demonstrate no bias between treatment groups. Dunnett-type equivalence approach. Using 2-sided $(1-2\alpha)$ Cl's
 - Possible T₀ approach III): KOVAR
- Main objective: demonstrated a possible DECREASING abundance at any sampling time (will be species and ... dependent). Multiplicity-adjusted approaches are possible, but rather conservative (many t's, $n_i = 6$)- performed 1-sided CI unadjusted

Appendix: How to model the various sampling times T_t ? II

- Already such a claim for at least ONE species (and/or its aggregations) could be a final outcome of the trial. BUT
- Analyze for a possible recovery, i.e. an following increase of abundance for non-inferiority up to superiority- again by means of an one-sided CI
- Do both together: by two-sided $(1 2\alpha)$ Cl's
- See the example in a minute

References I

- [1] Joel E. Cohen. Sum of a random number of correlated random variables that depend on the number of summands. *Am. Stat.*, 73(1):56–60, 2019.
- [2] Benjamin Daniels. Application of the closure principle computational approach test to assess ecotoxicological field studies: Comparative analysis using earthworm field test abundance data. Environmental Toxicology and Chemistry, 40(6):1750–1760, 2021.
- [3] M. Hasler and L. A. Hothorn. Multiple contrast tests in the presence of heteroscedasticity. *Biometrical Journal*, 50(5):793–800, October 2008.
- [4] T. Hothorn, L. Most, and P. Buhlmann. Most likely transformations. Scandinavian Journal of Statistics, 45(1):110–134, March 2018.
- [5] F. Konietschke and L. A. Hothorn. Rank-based multiple test procedures and simult. confidence intervals. E. J. Stat., 6:738–759, 2012.